Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
EMBO J ; 42(13): e112542, 2023 07 03.
Article in English | MEDLINE | ID: covidwho-2327293

ABSTRACT

Lipid droplets (LDs) form inter-organelle contacts with the endoplasmic reticulum (ER) that promote their biogenesis, while LD contacts with mitochondria enhance ß-oxidation of contained fatty acids. Viruses have been shown to take advantage of lipid droplets to promote viral production, but it remains unclear whether they also modulate the interactions between LDs and other organelles. Here, we showed that coronavirus ORF6 protein targets LDs and is localized to the mitochondria-LD and ER-LD contact sites, where it regulates LD biogenesis and lipolysis. At the molecular level, we find that ORF6 inserts into the LD lipid monolayer via its two amphipathic helices. ORF6 further interacts with ER membrane proteins BAP31 and USE1 to mediate ER-LDs contact formation. Additionally, ORF6 interacts with the SAM complex in the mitochondrial outer membrane to link mitochondria to LDs. In doing so, ORF6 promotes cellular lipolysis and LD biogenesis to reprogram host cell lipid flux and facilitate viral production.


Subject(s)
Coronavirus , Coronavirus/metabolism , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Lipolysis , Fatty Acids/metabolism
2.
Biology (Basel) ; 12(4)2023 Apr 13.
Article in English | MEDLINE | ID: covidwho-2327163

ABSTRACT

Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown that LDs are involved in numerous biological processes such as lipid trafficking and signaling, membrane remodeling, and intercellular organelle communications. To fully exploit the potential of LDs for scientific research and commercial applications, it is important to develop suitable extraction processes that preserve their properties and functions. However, research on LD extraction strategies is limited. This review first describes recent progress in understanding the characteristics of LDs, and then systematically introduces LD extraction strategies. Finally, the potential functions and applications of LDs in various fields are discussed. Overall, this review provides valuable insights into the properties and functions of LDs, as well as potential approaches for their extraction and utilization. It is hoped that these findings will inspire further research and innovation in the field of LD-based technology.

3.
Med Hypotheses ; 171: 111020, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2211144

ABSTRACT

Research evidence suggests that adipocytes in obesity might facilitate SARS-CoV-2 replication, for it was only found in adipose tissue of individuals with overweight or obesity but not lean individuals who died from COVID-19. As lipid metabolism is key to adipocyte function, and viruses are capable of exploiting and manipulating lipid metabolism of host cells for their own benefit of infection, we hypothesize that adipocytes could not only impair host immune defense against viral infection, but also facilitate SARS-CoV-2 entry, replication and assembly as a reservoir to boost the viral infection in obesity. The latter of which could mainly be mediated by SARS-CoV-2 hijacking the abnormal lipid metabolism in the adipocytes. If these were to be confirmed, an approach to combat COVID-19 in people with obesity by taking advantage of the abnormal lipid metabolism in adipocytes might be considered, as well as modifying lipid metabolism of other host cells as a potential adjunctive treatment for COVID-19.

4.
Vet Res ; 53(1): 90, 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2139401

ABSTRACT

Foamy macrophages containing prominent cytoplasmic lipid droplets (LDs) are found in a variety of infectious diseases. However, their role in Streptococcus uberis-induced mastitis is unknown. Herein, we report that S. uberis infection enhances the fatty acid synthesis pathway in macrophages, resulting in a sharp increase in LD levels, accompanied by a significantly enhanced inflammatory response. This process is mediated by the involvement of fatty acid binding protein 4 (FABP4), a subtype of the fatty acid-binding protein family that plays critical roles in metabolism and inflammation. In addition, FABP4 siRNA inhibitor cell models showed that the deposition of LDs decreased, and the mRNA expression of Tnf, Il1b and Il6 was significantly downregulated after gene silencing. As a result, the bacterial load in macrophages increased. Taken together, these data demonstrate that macrophage LD formation is a host-driven component of the immune response to S. uberis. FABP4 contributes to promoting inflammation via LDs, which should be considered a new target for drug development to treat infections.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Streptococcal Infections , Female , Animals , Cattle , Lipid Droplets/metabolism , Macrophages/microbiology , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Inflammation/metabolism , Inflammation/veterinary , Streptococcal Infections/veterinary , Mastitis, Bovine/microbiology , Cattle Diseases/metabolism
6.
Microbiol Spectr ; : e0219822, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2097937

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus in pigs, is one of the major pathogens for lethal watery diarrhea in piglets and poses a threat to public health because of its potential for interspecies transmission to humans. 25-Hydroxycholesterol (25HC), a derivative of cholesterol, exhibits multiple potential modulating host responses to pathogens, including viruses and bacteria, as well as pathogen-induced inflammation, while its antiviral effect on PDCoV and how it mediates the biological process of host cells to counter against infections remain poorly understood. Here, we thoroughly explored the antiviral effect of 25HC on PDCoV infection and tried to elucidate the underlying mechanisms. 25HC showed no toxic effect in LLC-PK1 cells and exerted antiviral ability against PDCoV infection in vitro. The viral cycle and time-of-addition analyses showed that 25HC mainly restricted the early and middle periods of the PDCoV postentry stage to inhibit infection. 25HC regulated disordered cholesterol metabolism induced by PDCoV infection and stimulated interferon-related lipid droplet accumulation. Transforming growth factor ß1 (TGF-ß1), screened by bioinformatic analyses, seemed to play an important role in PDCoV infection and was downregulated by 25HC. One interesting finding is that inhibition of TGF-ß1 with the inhibitor asiaticoside exhibited a similar antiviral capacity to 25HC and demonstrated regulation of cholesterol metabolism. Taking all of the findings together, we verified the antiviral effect of 25HC on PDCoV through interference with cholesterol metabolism, which may be related to its suppression of TGFß1. IMPORTANCE As an emerging enteropathogenic coronavirus in pigs, porcine deltacoronavirus (PDCoV) causes giant economic loss in the pig industry because of lethal diarrhea and possesses the potential for transmission from animals to humans. Several pieces of evidence have suggested the antiviral potential of cholesterol-25-hydroxylase and importance of cholesterol in viral infection. This study reports that 25-hydroxycholesterol (25HC) significantly restricted PDCoV infection through modulation of cholesterol metabolism, and we identified that lipid droplets play important roles in interferon response against virus infection. Moreover, this study identified the importance of TGF-ß1 in CoV infection by bioinformatic analysis and verified that the inhibition of TGF-ß1 showed anti-PDCoV capacity. Moreover, we uncovered the relationship between TGF-ß and cholesterol metabolism initially. Given that the importance of cholesterol in viral infection, 25HC has a great potential to treat PDCoV infection and TGF-ß1 can be a crucial antiviral target.

7.
Int J Mol Sci ; 23(18)2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2039867

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND), caused by a unique strain of Vibrio parahaemolyticus (Vp (AHPND)), has become the world's most severe debilitating disease in cultured shrimp. Thus far, the pathogenesis of AHPND remains largely unknow. Herein, in Litopenaeus vannamei, we found that a Vp (AHPND) infection significantly increased the expression of lipid droplets (LDs) protein LvPerilipin, as well as promoted the formation of LDs. In addition, the knockdown of LvPerilipin increased the shrimp survival rate in response to the Vp (AHPND) infection, and inhibited the proliferation of Vp (AHPND). Furthermore, we demonstrated that LvPerilipin depletion could increase the production of reactive oxygen species (ROS), which may be responsible for the decreased Vp (AHPND) proliferation. Taken together, our current data for the first time reveal that the shrimp lipid droplets protein Perilipin is involved in the pathogenesis of Vp (AHPND) via promoting LDs accumulation and decreasing ROS production.


Subject(s)
Penaeidae , Vibrio parahaemolyticus , Animals , Lipid Droplets , Perilipin-1 , Reactive Oxygen Species , Vibrio parahaemolyticus/physiology
8.
Front Microbiol ; 13: 918009, 2022.
Article in English | MEDLINE | ID: covidwho-1979049

ABSTRACT

The initial infection by the obligate intracellular bacillus Mycobacterium leprae evolves to leprosy in a small subset of the infected individuals. Transmission is believed to occur mainly by exposure to bacilli present in aerosols expelled by infected individuals with high bacillary load. Mycobacterium leprae-specific DNA has been detected in the blood of asymptomatic household contacts of leprosy patients years before active disease onset, suggesting that, following infection, the bacterium reaches the lymphatic drainage and the blood of at least some individuals. The lower temperature and availability of protected microenvironments may provide the initial conditions for the survival of the bacillus in the airways and skin. A subset of skin-resident macrophages and the Schwann cells of peripheral nerves, two M. leprae permissive cells, may protect M. leprae from effector cells in the initial phase of the infection. The interaction of M. leprae with these cells induces metabolic changes, including the formation of lipid droplets, that are associated with macrophage M2 phenotype and the production of mediators that facilitate the differentiation of specific T cells for M. leprae-expressed antigens to a memory regulatory phenotype. Here, we discuss the possible initials steps of M. leprae infection that may lead to active disease onset, mainly focusing on events prior to the manifestation of the established clinical forms of leprosy. We hypothesize that the progressive differentiation of T cells to the Tregs phenotype inhibits effector function against the bacillus, allowing an increase in the bacillary load and evolution of the infection to active disease. Epigenetic and metabolic mechanisms described in other chronic inflammatory diseases are evaluated for potential application to the understanding of leprosy pathogenesis. A potential role for post-exposure prophylaxis of leprosy in reducing M. leprae-induced anti-inflammatory mediators and, in consequence, Treg/T effector ratios is proposed.

9.
Cells ; 10(5)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1223957

ABSTRACT

Liver injury in COVID-19 patients has progressively emerged, even in those without a history of liver disease, yet the mechanism of liver pathogenicity is still controversial. COVID-19 is frequently associated with increased serum ferritin levels, and hyperferritinemia was shown to correlate with illness severity. The liver is the major site for iron storage, and conditions of iron overload have been established to have a pathogenic role in development of liver diseases. We presented here six patients who developed severe COVID-19, with biochemical evidence of liver failure. Three cases were survived patients, who underwent liver biopsy; the other three were deceased patients, who were autopsied. None of the patients suffered underlying liver pathologies. Histopathological and ultrastructural analyses were performed. The most striking finding we demonstrated in all patients was iron accumulation into hepatocytes, associated with degenerative changes. Abundant ferritin particles were found enclosed in siderosomes, and large aggregates of hemosiderin were found, often in close contact with damaged mitochondria. Iron-caused oxidative stress may be responsible for mitochondria metabolic dysfunction. In agreement with this, association between mitochondria and lipid droplets was also found. Overall, our data suggest that hepatic iron overload could be the pathogenic trigger of liver injury associated to COVID-19.


Subject(s)
COVID-19/diagnosis , Iron Overload/etiology , Liver Failure/etiology , Liver/pathology , Severity of Illness Index , Adult , Aged , Antiviral Agents , Biopsy , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Female , Ferritins/analysis , Hepatocytes/cytology , Hepatocytes/pathology , Humans , Iron/analysis , Iron/metabolism , Iron Overload/mortality , Iron Overload/pathology , Iron Overload/therapy , Liver/cytology , Liver/metabolism , Liver Failure/mortality , Liver Failure/pathology , Liver Failure/therapy , Liver Function Tests , Male , Middle Aged , Mitochondria/pathology , Positive-Pressure Respiration , SARS-CoV-2/isolation & purification
10.
Front Mol Biosci ; 7: 578964, 2020.
Article in English | MEDLINE | ID: covidwho-902422

ABSTRACT

Since its appearance, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has immediately alarmed the World Health Organization for its very high contagiousness and the complexity of patient clinical profiles. The worldwide scientific community is today gathered in a massive effort in order to develop safe vaccines and effective therapies in the shortest possible time. Every day, new pieces of SARS-CoV-2 infective puzzle are disclosed. Based on knowledge gained with other related coronaviruses and, more in general, on single-strand RNA viruses, we highlight underexplored molecular routes in which lipids and lipid droplets (LDs) might serve essential functions in viral infections. In fact, both lipid homeostasis and the pathways connected to lipids seem to be fundamental in all phases of the coronavirus infection. This review aims at describing potential roles for lipid and LDs in host-virus interactions and suggesting LDs as new and central cellular organelles to be investigated as potential targets against SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL